

for the measurement of electrical variables in heavycurrent power system

Application

SINEAX DME 406 (Fig. 1) is a programmable transducer with a PROFIBUS-DP connection that simultaneously measures all variables of a heavy-current power system.

The device conforms to the PROFIBUS standard EN 50 170. The PROFIBUS is an open field-bus standard independent of manufacturers with a wide range of applications. The PROFIBUS supports the communication of devices from different manufacturers without special adaptations to the interface.

The transducers are also equipped with an **RS 232** serial interface to which a PC with the corresponding software can be connected for programming or accessing and executing useful ancillary functions.

The usual methods of connection, the rated values of the input variables and the type of internal energy metering are the main parameters that can be programmed.

The ancillary functions include a power system check, a facility for printing rating labels and provision for reading and setting the power meter.

The transducer fulfils all the essential requirements and regulations concerning electromagnetic compatibility **(EMC)** and **Safety** (IEC 1010 resp. EN 61 010). It was developed and is manufactured and tested in strict accordance with the **quality assurance standard** ISO 9001.

Features / Benefits

- Communication capability via PROFIBUS-DP or RS 232 C interface
- Measurement of current, voltage, and active, reactive and apparent power, power factor, frequency and energy, as well as special current functions (bimetal, slave pointer and signed or unsigned average value)

Measured variables	Output	Types
	PROFIBUS DP	DME 406
Current, voltage (rms), active/reactive/apparent power	Without analogue outputs, with bus RS 485 (MODBUS) see data sheet DME 401-1 Le	DME 401
cos ϕ , sin ϕ , power factor RMS value of the current with wire setting range (bimetal measuring function)	4 analogue outputs and bus RS 485 (MODBUS) see data sheet DME 440-1 Le	DME 440
Slave pointer function for the measurement of the RMS value IB	2 analogue outputs and 4 digital outputs or	DME 424
Frequency Average value of the currents with sign of the active power (power system only)	4 analogue outputs and 2 digital outputs see data sheet DME 424/442-1 Le	DME 442
	Data bus LON see data sheet DME 400-1 Le	DME 400

• Accuracy class 0.2

Fig. 1. SINEAX DME 406 in housing **T24**, clipped onto a top-hat rail.

- Adjustable conversion factor for current and voltage transducers
- Up to 4 integrated energy meters, storage every each 203 s, storage for: 20 years
- Windows software with password protection for programming, data analysis, power system status simulation, acquisition of meter data and making settings
- Power supply DC or AC with a very large voltage range, or AC power supply/universally applicable
- Provision for either snapping the transducer onto top-hat rails or securing it with screws to a wall or panel

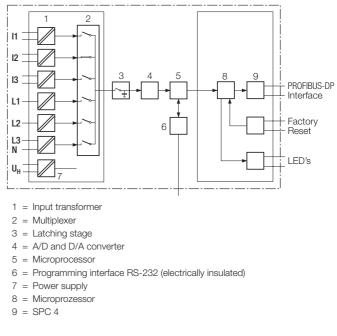


Fig. 2. Block diagram.

Symbols

Symbols	Meaning	Symbols	Meaning (continuation)
х	Measured variable		
XO	Lower limit of the measured variable	Q	Reactive power of the system $Q = Q1 + Q2 + Q3$
X1	Break point of the measured variable	Q1	Reactive power phase 1 (phase-to-neutral L1 – N)
X2	Upper limit of the measured variable	Q2	Reactive power phase 2 (phase-to-neutral L2 – N)
U	Input voltage	Q3	Reactive power phase 3
Ur	Rated value of the input voltage		(phase-to-neutral L3 – N)
U 12	Phase-to-phase voltage L1 – L2	S	Apparent power of the system
U 23	Phase-to-phase voltage L2 – L3	S1	$S = \sqrt{I_{1}^{2} + I_{2}^{2} + I_{3}^{2}} \cdot \sqrt{U_{1}^{2} + U_{2}^{2} + U_{3}^{2}}$ Apparent power phase 1
U 31	Phase-to-phase voltage		(phase-to-neutral L1 – N)
U1N	L3 – L1 Phase-to-neutral voltage	S2	Apparent power phase 2 (phase-to-neutral L2 – N)
U2N	L1 – N	S3	Apparent power phase 3 (phase-to-neutral L3 – N)
UZIN	Phase-to-neutral voltage L2 – N	Sr	Rated value of the apparent power of the system
U3N	Phase-to-neutral voltage L3 – N	PF	Active power factor $\cos \varphi = P/S$
UM	Average value of the voltages	PF1	Active power factor phase 1 P1/S1
(U1N + U2N + U3N) / 3	PF2	Active power factor phase 2 P2/S2	
I	Input current	PF3	Active power factor phase 3 P3/S3
11	AC current L1	QF	Reactive power factor sin $\varphi = Q/S$
12	AC current L2	QF1	Reactive power factor phase 1 Q1/S1
13	AC current L3	QF2	Reactive power factor phase 2 Q2/S2
lr	Rated value of the input current	QF3	Reactive power factor phase 3 Q3/S3
IM	Average value of the currents $(11 + 12 + 13) / 3$	LF	Power factor of the system
IMS	Average value of the currents and sign of the active power (P)		$LF = sgnQ \cdot (1 - PF)$
IB	RMS value of the current with wire setting range	LF1	Power factor phase 1 sgnQ1 · (1 - PF1)
BS	(bimetal measuring function) Slave pointer function for the measurement of	LF2	Power factor phase 2 sgnQ2 · (1 – PF2)
	the RMS value IB	LF3	Power factor phase 3 sgnQ3 · (1 – PF3)
φ	Phase-shift between current and voltage	Н	Power supply
F	Frequency of the input variable	Hn	Rated value of the power supply
Ρ	Active power of the system $P = P1 + P2 + P3$		nated value of the power supply
P1	Active power phase 1 (phase-to-neutral L1 – N)		
P2	Active power phase 2 (phase-to-neutral L2 – N)		
P3	Active power phase 3 (phase-to-neutral L3 – N)		

Applicable standards and regulations

IEC 688 resp. EN 60 688	Electrical measuring transducers for converting AC electrical variables into analogue and digital signals
IEC 1010 resp. EN 61 010	Safety regulations for electrical meas- uring control and laboratory equip- ment
IEC 529 resp. EN 60 529	Protection types by case (code IP)
IEC 255-4 Part. E5	High-frequency disturbance test (static relays only)
IEC 1000-4-2/-3/-4/-6	Electromagnetic compatibility for in- dustrial-process measurement and control equipment
EN 55 011	Electromagnetic compatibility of data processing and telecommunication equipment Limits and measuring principles for radio interference and information equipment
IEC 68-2-1/-2/-3/-6/-27	
resp. EN 60 068-2-1/-2/-3/-6/-27	Ambient tests -1 Cold, -2 Dry heat, -3 Damp heat, -6 Vibration, -27 Shock
DIN 40 110	AC quantities
DIN 43 807	Terminal markings
IEC 1036	Alternating current static watt-hour meters for active energy (classes 1 and 2)
UL 94	Tests for flammability of plastic materials for parts in devices and appliances

Consumption [VA] (at external power supply):

Voltage circuit: U² / 400 k Ω Current circuit: \leq I² · 0,01 Ω

Continuous thermal ratings of inputs

Current circuit	10 A 400 V single-phase AC system
	693 V three-phase system
Voltage circuit	480 V single-phase AC system 831 V three-phase system

Short-time thermal rating of inputs

Input variable	Number of inputs	Duration of overload	Interval between two overloads	
Current circuit	400 V single-phase AC system 693 V three-phase system			
100 A	5	3 s	5 min.	
250 A	1	1 s	1 hour	
Voltage circuit	1 A, 2 A, 5 A			
Single-phase AC system 600 V H _{interr} : 1.5 Ur	10	10 s	10 s	
Three-phase system 1040 V H _{intern} : 1.5 Ur	10	10 s	10 s	

PROFIBUS-DP (bus interface RS-485)

		Bus connections:	Screw terminals on terminals 15 to 21
		Protocole:	PROFIBUS-DP EN 50 170
		Protocol chip:	SPC 4
Technical data		Transmission rate:	9,6 kBaud 12 MBaud automatic baud rate recognition
Inputs -		Addresses:	126 (default), set via Set_Slave_Address
Input variables:	See Table 4 and 5	Max. length of bus:	100 1200 m (dependent on the
Measuring ranges:	See Table 4 and 5		baud rate and cable type)
Waveform:	Sinusoidal	Interface:	RS 485, electrically insulated (500 V)
Rated frequency:	50, 60 Hz or 16 2/3 Hz	Configuration possibilities:	Locally from a PC, or via bus master

Table 1: Measured values that are available at the bus interface, depending on the application

Symbols	Meaning	Application (see Table 5) A11 A16 A34 A24 / A44			
U	Input voltage	•		_	
U12	Phase-to-phase voltage L1 – L2	_	•	•	
U23	Phase-to-phase voltage L2 – L3	_	•	•	
U31	Phase-to-phase voltage L3 – L1		•	•	
U1N	Phase-to-neutral voltage L1 – N	_		•	
U2N	Phase-to-neutral voltage L2 – N	—		•	
U3N	Phase-to-neutral voltage L3 – N	_		•	
UM	Average value of the voltages	_	_	•	
l	Input current	•			
11	AC current L1		•	•	
12	AC current L2		•	•	
13	AC current L3	_	•	•	
IM	Average value of the currents		•	•	
IMS	Average value of the currents and sign of the active power	_	•	•	
IB	RMS value of the current with wire setting range (bimetal measuring function)	•	_	_	
IB1	RMS value of the current with wire setting range (bimetal measuring function), phase 1	_	•	•	
IB2	RMS value of the current with wire setting range (bimetal measuring function), phase 2	_	•	•	
IB3	RMS value of the current with wire setting range (bimetal measuring function), phase 3	_	•	•	
BS	Slave pointer function for the measurement of the RMS value IB	•	_		
BS1	Slave pointer function for the measurement of the RMS value IB, phase 1	_	•	•	
BS2	Slave pointer function for the measurement of the RMS value IB, phase 2	_	•	•	
BS3	Slave pointer function for the measurement of the RMS value IB, phase 3	_	•	•	
F	Frequency of the input variable	•	•	•	
P	Active power of the system	•	•	•	
P1	Active power phase 1 (phase-to-neutral L1 – N)	_		•	

Continuation of Table 1:

Symbols	Meaning	Application (see Table 5)			
		A11 A16	A34	A24 / A44	
P2	Active power phase 2 (phase-to-neutral L2 – N)	_		•	
P3	Active power phase 3 (phase-to-neutral L3 – N)	_		•	
PF	Active power factor $\cos \varphi = P/S$	•	•	•	
PF1	Active power factor phase 1, P1/S1	—	—	•	
PF2	Active power factor phase 2, P2/S2	—	—	•	
PF3	Active power factor phase 3, P3/S3		—	•	
Q	Reactive power of the system	•	•	•	
Q1	Reactive power phase 1 (phase-to-neutral L1 – N)	—		•	
Q2	Reactive power phase 2 (phase-to-neutral L2 – N)	-	_	•	
Q3	Reactive power phase 3 (phase-to-neutral L3 – N)	_		•	
S	Apparent power of the system	•	٠	•	
S1	Apparent power phase 1 (phase-to-neutral L1 – N)	-	_	•	
S2	Apparent power phase 2 (phase-to-neutral L2 – N)	-	_	•	
S3	Apparent power phase 3 (phase-to-neutral L3 – N)	—	_	•	
LF	Power factor of the system	•	•	•	
LF1	Power factor phase 1	_		•	
LF2	Power factor phase 2			•	
LF3	Power factor phase 3	_		•	
QF	Reactive power factor $\sin \varphi = Q/S$	•	•	•	
QF1	Reactive power factor phase 1, Q1/S1	—		•	
QF2	Reactive power factor phase 2, Q2/S2	—		•	
QF3	Reactive power factor phase 3, Q3/S3			•	
EA	Energy meter 1	•	•	•	
EB	Energy meter 2	•	•	•	
EC	Energy meter 3	•	•	•	
ED	Energy meter 4		•	•	

Where c.t's and/or v.t's are used for measurement, the values are referred to the primaries of the transformers.

Variables

– Energy meter reset

- Maximum value pointer reset

Reference conditions

Ambient temperature:	+ 23 °C ± 1 K
Input variable:	Rated useful range
Power supply:	$H = Hn \pm 1\%$
Active/reactive factor:	$\cos \varphi = 1$ resp. $\sin \varphi = 1$
Frequency:	50 60 Hz, 16 2/3 Hz
Waveform:	Sinusoidal, form factor 1.1107
Miscellaneous:	EN 60 688

Power supply -

AC voltage:

100, 110, 230, 400, 500 or 693 V, ± 10%, 45 to 65 Hz Power consumption approx. 10 VA

DC, AC power pack (DC or 50 ... 60 Hz)

Table 2: Rated voltages and tolerances

Rated voltage U_{N}	Tolerance
24 60 V DC, AC	DC – 15 + 33%
85 230 V DC, AC	AC ± 10%

RS 232 C

9-pin

Consumption:

Interface:

DSUB socket:

50 GND

0 DTR

0 TXD

o

Installation data

Housing material:

0 CTS

Housing:

Mounting

RTS 0 0 RXD

DSR

 \leq 9 W resp. \leq 10 VA

from all other circuits.

Programming connector on transducer

0.2 resp. 0.4 at applications with phase-shift

1 ... 2 times the measurement cycle

1.0 acc. to IEC 1036 $(0.1 \text{ Ir} \le \text{I} \le 1.5 \text{ Ir})$

Duration of the Depending on measured variable and measurement cycle: programming

Response time:

System response

Accuracy class:

Energy meter:

Influencing quantities and permissible variations

Acc. to EN 60 688

Electrical safety

Protection class:	II		Mounting:	For snap (35 × 15 m
Enclosure protection:	IP 40, housing IP 20, terminals			EN 50 022 or
Overvoltage category:	III			directly on pull-out sc
Insulation test:	Input voltage:	AC 400 V	Orientation:	Any
	Input current:	AC 400 V	Weight:	With supp
	Output:	DC 40 V		approx. 1.
	Power supply:	AC 400 V DC 230 V		With AC/E approx. 0.
Surge test:	5 kV; 1.2/50 μs; 0	.5 Ws	Terminals	
Test voltages:	50 Hz, 1 min. acc.		Туре:	Screw terr
	EN 61 010-1	EN 61 010-1		$\leq 4.0 \text{ mm}^2$
	, 1	5550 V, inputs versus all other circuits		2×2.5 mr
		as well as outer surface		
	3250 V, input circ other	cuits versus each	EN 60 068-2-6:	Vibration
	3700 V, power sup		Acceleration:	± 2 g
	and SCI as well as	s outer surface	Frequency range:	10 150
	490 V, outputs and other and versus of			sweep: 1 octave/r

Housing T24 See Section "Dimensioned drawings" Lexan 940 (polycarbonate), flammability class V-0 acc. to UL 94, self-extinguishing, non-dripping, free of halogen

The interface is electrically insulated

For snapping onto top-hat rail mm or 35×7.5 mm) acc. to 22

nto a wall or panel using the screw hole brackets

ply transformer .1 kg DC power pack 0.7 kg

rminals with wire guards

n² single wire or nm² fine wire

0...10 Hz, rate of frequency /minute

Number of cycles: EN 60 068-2-27:	10, in each of the three axes Shock	Nominal range of use for temperature:	0 <u>1530</u> 45 °C (usage group II)
Acceleration:	3×50 g	Storage temperature:	– 40 to + 85 °C
EN 60 068-2-1/-2/-3:	3 shocks each in 6 directions Cold, dry heat, damp heat	Annual mean relative humidity:	≤ 75%
Ambient conditions			
Variations due to ambient temperature:	± 0.1% / 10 K		

Table 3: SINEAX DME 406 with PROFIBUS-DP

The versions of the transducer below programmed with the **basic** configuration are available as standard versions. It is only necessary to quote the **Order No.**:

Des	cription / Basic configuration		Marking	Order No.
1.	Mechanical design:	Housing T24 for rail and wall mounting	406 - 1	
2.	Rated frequency:	50 Hz	1	
3.	Power supply:	230 V AC, 45 65 Hz	3	146 903
		24 60 V DC/AC	7	146 896
		85230 V DC/AC	8	146 911
4.	Power supply connection:	External connection (standard)	1	
5.	Test certificate:	None supplied	0	
6.	Configuration:	Basic configuration programmed	0	
See	Table 4 "Ordering Information"			
Bas	ic configuration			
1.	Application:	4-wire, 3-phase system, asymmetric load (NPS)	A 44	
2.	Input voltage:	Design value Ur = 100 V	U 21	
3.	Input current:	Design value $Ir = 2 A$	V 2	
4.	Primary data:	Without specification of primary rating	W O	
5.	Energy meter 1:	Not used	EA 00	
6.	Energy meter 2:	Not used	FA 00	
7.	Energy meter 3:	Not used	GA 00	
8.	Energy meter 4:	Not used	HA 00	
See	Table 5 "Programming"			

Table 4: Ordering Information

DESCRIPTION		
1. Mechanical design		
Housing T24 for rail and wall mounting	406 - 1	
2. Rated frequency		
1) 50 Hz (60 Hz possible without additional error; 16 2/3 Hz, additional error 1.25%)	1	
2) 60 Hz (50 Hz possible without additional error; 16 2/3 Hz, additional error 1.25%)	2	
3) 16 2/3 Hz (not re-programming by user, 50/60 Hz possible, but with additional error 1.25%)	3	

Table 4 continued on next page!

Continuation "Table 4: Ordering Information"

DESCRIPTION	MA	RKING		
. Power supply				
Nominal range				
1) AC 90 110 V $H_n = 100 V$		1		
2) AC 99 121 V H _n = 110 V		2		
3) AC 207 253 V $H_n = 230$ V		3		
4) AC 360 440 V H _n = 400 V		4		
5) AC 450 550 V H _n = 500 V		5		
6) AC 623 762 V $H_n = 693 V$		6		
7) DC/AC 24 60 V		7		
8) DC/AC 85 230 V		8		
4. Power supply connection				
1) External connection (standard)		1		
2) Internal from voltage input		2		
Line 2: Not available for rated frequence	cy 16 2/3 Hz and applications A15 / A16 / A24			
Caution: The power supply voltage mus	t agree with the input voltage (Table 5)!			
5. Test certificate				
0) None supplied		0		
D) With test certificate in German		D		
E) With test certificate in English		Е		
6. Configuration				
0) Basic configuration programmed (se	e Table 3)	0		
9) Programmed to order		9		
Line 0: Not available if the power supp	ly is taken from the voltage input			
	ist be entered on Form W 2410 e and the form must be included values of the measured variables or meter readings have to			

Tabelle 5: Programming

DESCRIPTION	Application		
	A11 A16	A34	A24 / A44
1. Application (system)			
Single-phase AC	A11		
3-wire, 3-phase symmetric load, phase-shift U: L1-L2, I: L1	A12		
3-wire, 3-phase symmetric load	A13		
4-wire, 3-phase symmetric load	A14		
3-wire, 3-phase symmetric load, phase-shift U: L3-L1, I: L1	A15		
3-wire, 3-phase symmetric load, phase-shift U: L2-L3, I: L1	A16		
3-wire, 3-phase asymmetric load		A34	
4-wire, 3-phase asymmetric load			A44
4-wire, 3-phase asymmetric load, open Y			A24

Table 5 continued on next page!

Continuation «Table 5: Programming»

DESCRIPTION			A11 A16	Application A34	A24 / A44
2. Input voltage					
Rated value Ur = 57.7 V			U01		
Rated value Ur = 63,5 V			U02		
Rated value Ur = 100 V			U03		
Rated value Ur = 110 V			U04		
Rated value Ur = 120 V			U05		
Rated value Ur = 230 V			U06		
Rated value Ur	[V]		U91		
Rated value Ur = 100 V			U21	U21	U21
Rated value Ur = 110 V			U22	U22	U22
Rated value Ur = 115 V			U23	U23	U23
Rated value Ur = 120 V			U24	U24	U24
Rated value Ur = 400 V			U25	U25	U25
Rated value Ur = 500 V			U26	U26	U26
Rated value Ur	[V]		U93	U93	U93
Lines U01 to U06: Only for single phase 4-wire, 3-phase symmetry					
Line U91: Ur [V] 57 to 400					
Line U93: Ur [V] > 100 to 693					
3. Input current					
Rated value Ir = 1 A V1			V1	V1	
Rated value Ir = $2 \text{ A} \text{ V}2$			V2	V2	
Rated value Ir = 5 A V3			V3	V3	
Rated value Ir > 1 to 6	[A]		V9	V9	V9
4. Primary rating (voltage and current tran	sformer)				
Without specification of primary rating			WO	WO	WO
VT = kV CT =	=	A	W9	W9	W9
Line W9: Specify transformer ratio primary The secondary ratings must corr voltage and current specified for	respond to	the rated input			

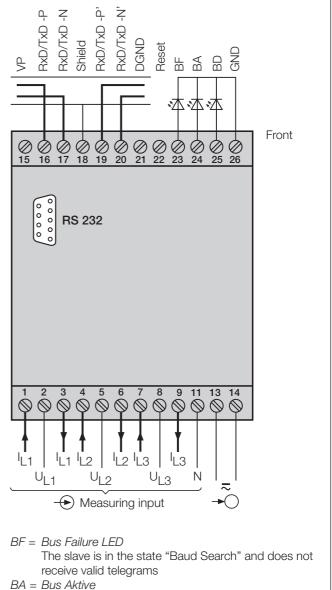
Continuation "Table 5: Programming"

DESCRIPTION		A11 A16	Application A34	A24 / A44	
. Energ	gy meter 1				
Not u	Not used		EA00	EA00	EA00
Ι	System	[Ah]	EA50		
11	L1	[Ah]		EA51	EA51
12	L2	[Ah]		EA52	EA52
13	L3	[Ah]		EA53	EA53
S	System	[VAh]	EA54	EA54	EA54
S1	L1	[VAh]			EA55
S2	L2	[VAh]			EA56
S3	L3	[VAh]			EA57
P	System (incoming)	[Wh]	EA58	EA58	EA58
P1	L1 (incoming)	[Wh]			EA59
P2	L2 (incoming)	[Wh]			EA60
P3	L3 (incoming)	[Wh]			EA61
Q	System (inductive)	[Varh]	EA62	EA62	EA62
Q1	L1 (inductive)	[Varh]			EA63
Q2	L2 (inductive)	[Varh]			EA64
Q3	L3 (inductive)	[Varh]			EA65
Ρ	System (outgoing)	[Wh]	EA66	EA66	EA66
P1	L1 (outgoing)	[Wh]			EA67
P2	L2 (outgoing)	[Wh]			EA68
P3	L3 (outgoing)	[Wh]			EA69
Q	System (capacitive)	[Varh]	EA70	EA70	EA70
Q1	L1 (capacitive)	[Varh]			EA71
Q2	L2 (capacitive)	[Varh]			EA72
Q3	L3 (capacitive)	[Varh]			EA73
. Energ	gy meter 2				
-	e as energy meter 1, but	markings start with a	FA	FA	FA
Energy meter 3					
Same capita	e as energy meter 1, but al G	markings start with a	GA	GA	GA
3. Energy meter 4					
Same as energy meter 1, but markings start with a capital H		markings start with a	HA	HA	HA

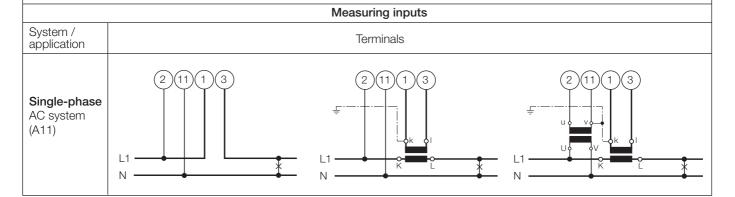
Note: The meter reading is referred to the power $P = I \cdot Up$ for I, respectively $I1 \cdot Up$ for I1, $I2 \cdot Up$ for I2 and $I3 \cdot Up$ for I3 where Up = the primary rated voltage or the secondary rated voltage if there is no v.t.

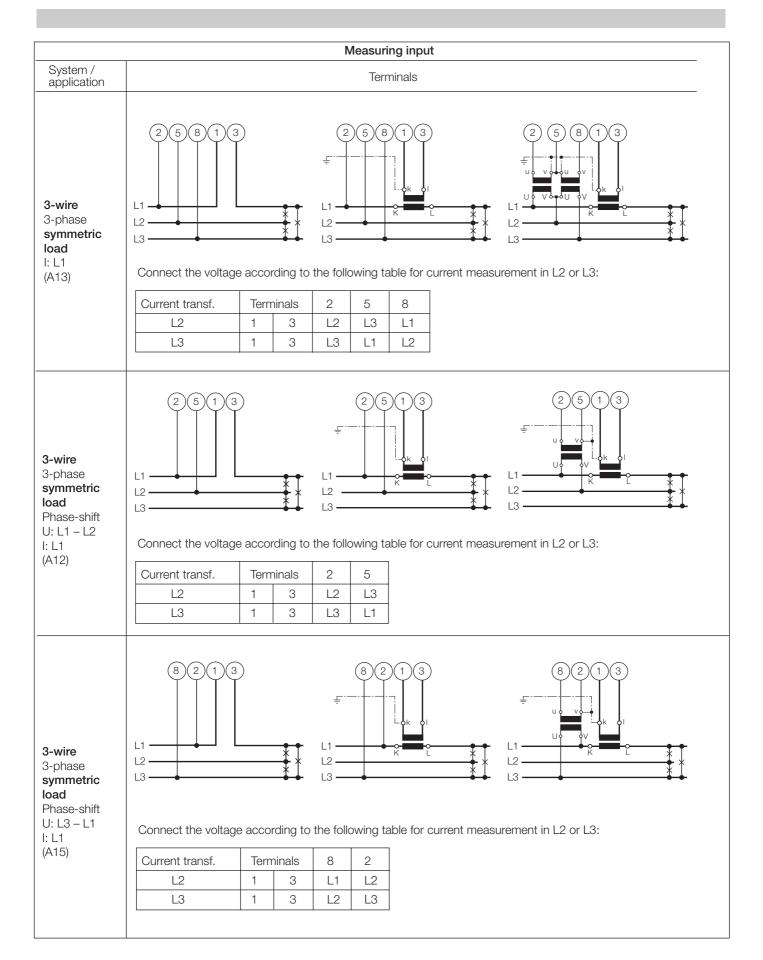
Electrical connections

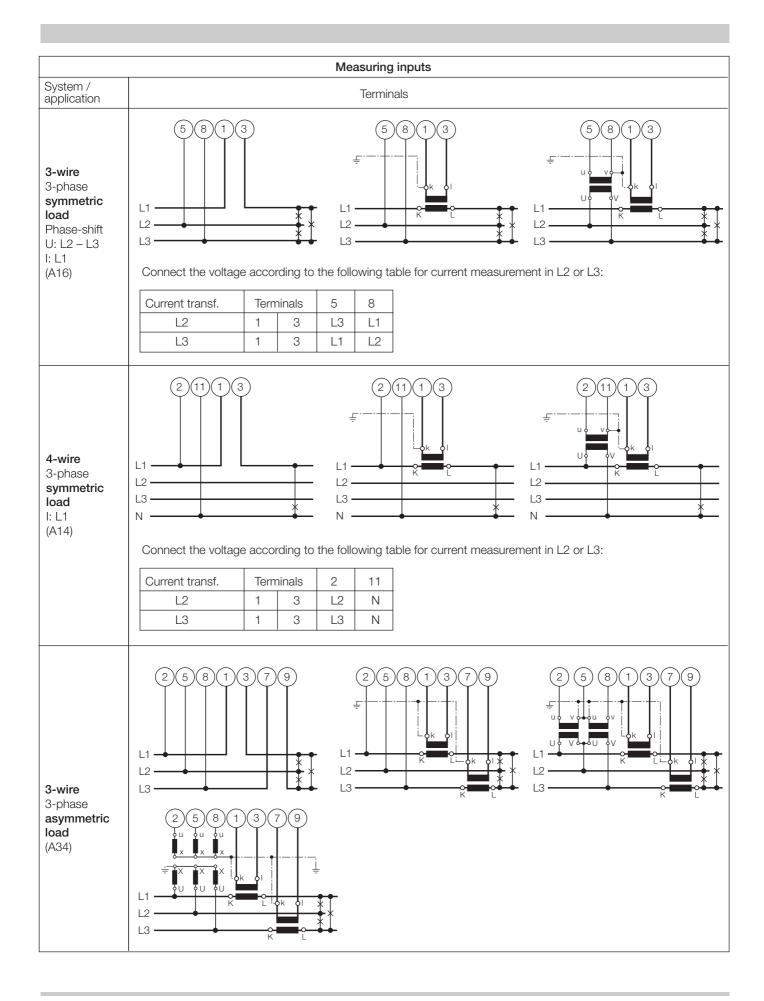
Function			Connection
Measuring input	AC current IL1 IL2		1/3 4/6
		IL3	7/9
	AC voltage	UL1	2
		UL2	5
		UL3 N	8 11
		IN	
RS 485	VP		15
(PROFIBUS DP)	RxD	/TxD -P	16
	RxD	/TxD -N	17
	Shie	ld	18
	RxD	/TxD -P'	19
	RxD/TxD -N'		20
	DGN	1D	21
Power supply AC	ower supply AC ~		13
		~	14
DC)	+	13
		-	14

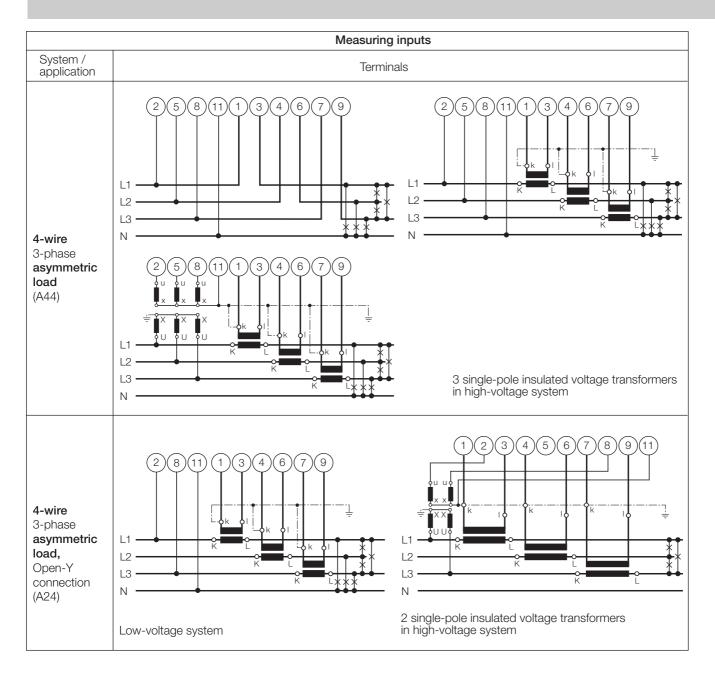

If power supply is taken from the measured voltage internal connections are as follow:

Application (system)	Internal connection Terminal / System		
Single-phase AC current 4-wire 3-phase symmetric load	2 / 11 (L1 – N) 2 / 11 (L1 – N)		
All other (apart from A15 / A16 / A24)	2 / 5 (L1 – L2)		


Bus Cable Termination


Both ends of the bus cable must be fitted with bus terminators. This ensures that:


- the conductor has a fixed rest voltage,
- reflections in the cable are minimized and
- the bus has an almost constant load.



- BA = BUS AKIIVE
- The slave is exchanging data cyclically
- BD = Bus Diagnosis LED
 - Lit: Parameter error
 - Flashing: Configuration error

Relationship between PF, QF and LF

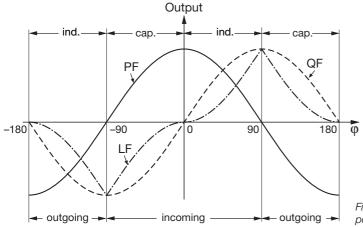


Fig. 3. Active power PF ——, reactive power QF -----, power factor LF -----.

Dimensioned drawings

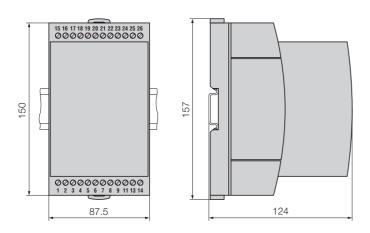


Fig. 4. SINEAX DME 406 in housing **T24** clipped onto a top-hat rail $(35 \times 15 \text{ mm or } 35 \times 7.5 \text{ mm, acc. to EN 50 022}).$

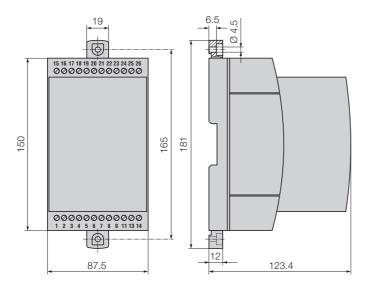


Fig. 5. SINEAX DME 406 in housing **T24**, screw hole mounting brackets pulled out.

Table 6: Accessories

Description	Order No.
Programming cable	980 179
Configuration software DME 4 for SINEAX/EURAX DME 424, 440, 442, SINEAX DME 400, 401 and 406 Windows 3.1x, 95, 98, NT and 2000 on CD in German, English, French, Italian and Dutch (Download free of charge under http://www.gmc-instruments.com) In addition, the CD contains all configuration programmes presently available for Camille Bauer products.	146 557
Operating Instructions DME 406-1 Bd-f-e	146 888

Printed in Switzerland • Subject to change without notice • Edition 05.01 • Data sheet No. DME 406-1 Le

Aargauerstrasse 7 CH-5610 Wohlen/Switzerland Phone +41 56 618 21 11 Fax +41 56 618 24 58 e-mail: cbag@gmc-instruments.com http://www.gmc-instruments.com

