SINEAX DME 406 with PROFIBUS-DP Programmable multi-transducer

for the measurement of electrical variables in heavycurrent power system

Application

SINEAX DME 406 (Fig. 1) is a programmable transducer with a PROFIBUS-DP connection that simultaneously measures all variables of a heavy-current power system.
The device conforms to the PROFIBUS standard EN 50 170. The PROFIBUS is an open field-bus standard independent of manufacturers with a wide range of applications. The PROFIBUS supports the communication of devices from different manufacturers without special adaptations to the interface.
The transducers are also equipped with an RS 232 serial interface to which a PC with the corresponding software can be connected for programming or accessing and executing useful ancillary functions.
The usual methods of connection, the rated values of the input variables and the type of internal energy metering are the main parameters that can be programmed.
The ancillary functions include a power system check, a facility for printing rating labels and provision for reading and setting the power meter.
The transducer fulfils all the essential requirements and regulations concerning electromagnetic compatibility (EMC) and Safety (IEC 1010 resp. EN 61 010). It was developed and is manufactured and tested in strict accordance with the quality assurance standard ISO 9001.

Features / Benefits

- Communication capability via PROFIBUS-DP or RS 232 C interface
- Measurement of current, voltage, and active, reactive and apparent power, power factor, frequency and energy, as well as special current functions (bimetal, slave pointer and signed or unsigned average value)

Measured variables	Output	Types
Current, voltage (rms), active/reactive/apparent power $\cos \varphi, \sin \varphi$, power factor RMS value of the current with wire setting range (bimetal measuring function) Slave pointer function for the measurement of the RMS value IB Frequency Average value of the currents with sign of the active power (power system only)	PROFIBUS DP	DME 406
	Without analogue outputs, with bus RS 485 (MODBUS) see data sheet DME 401-1 Le	DME 401
	4 analogue outputs and bus RS 485 (MODBUS) see data sheet DME 440-1 Le	DME 440
	2 analogue outputs and 4 digital outputs or	DME 424
	4 analogue outputs and 2 digital outputs see data sheet DME 424/442-1 Le	DME 442
	Data bus LON see data sheet DME 400-1 Le	DME 400

- Accuracy class 0.2

Fig. 1. SINEAX DME 406 in housing T24, clipped onto a top-hat rail.

- Adjustable conversion factor for current and voltage transducers
- Up to 4 integrated energy meters, storage every each 203 s , storage for: 20 years
- Windows software with password protection for programming, data analysis, power system status simulation, acquisition of meter data and making settings
- Power supply DC or AC with a very large voltage range, or AC power supply/universally applicable
- Provision for either snapping the transducer onto top-hat rails or securing it with screws to a wall or panel

1 = Input transformer
$2=$ Multiplexer
3 = Latching stage
$4=A / D$ and D/A converter
5 = Microprocessor
6 = Programming interface RS-232 (electrically insulated)
7 = Power supply
8 = Microprozessor
$9=$ SPC 4

Fig. 2. Block diagram.

SINEAX DME 406 with PROFIBUS-DP
 Programmable multi-transducer

Symbols

Symbols	Meaning
x	Measured variable
X0	Lower limit of the measured variable
X1	Break point of the measured variable
X2	Upper limit of the measured variable
U	Input voltage
Ur	Rated value of the input voltage
U 12	Phase-to-phase voltage $L 1-L 2$
U 23	Phase-to-phase voltage L2 - L3
U 31	Phase-to-phase voltage L3 - L1
U1N	Phase-to-neutral voltage L1 - N
U2N	Phase-to-neutral voltage L2-N
U3N	Phase-to-neutral voltage $\mathrm{L} 3-\mathrm{N}$
UM	Average value of the voltages (U1N + U2N + U3N) / 3
I	Input current
11	AC current L1
12	AC current L2
13	AC current L3
Ir	Rated value of the input current
IM	Average value of the currents ($11+12+13$)/3
IMS	Average value of the currents and sign of the active power (P)
IB	RMS value of the current with wire setting range (bimetal measuring function)
BS	Slave pointer function for the measurement of the RMS value IB
φ	Phase-shift between current and voltage
F	Frequency of the input variable
P	Active power of the system P = P1 + P2 + P3
P1	Active power phase 1 (phase-to-neutral L1 - N)
P2	Active power phase 2 (phase-to-neutral L2 - N)
P3	Active power phase 3 (phase-to-neutral L3 - N)

Symbols	Meaning (continuation)	
Q	Reactive power of the system $\mathrm{Q}=\mathrm{Q} 1+\mathrm{Q} 2+\mathrm{Q} 3$	
Q1	Reactive power phase 1 (phase-to-neutral L1 - N)	
Q2	Reactive power phase 2 (phase-to-neutral L2 - N)	
Q3	Reactive power phase 3 (phase-to-neutral L3-N)	
S	Apparent power of the system $S=\sqrt{I_{1}^{2}+I_{2}^{2}+I_{3}^{2}} \cdot \sqrt{U_{1}^{2}+U_{2}^{2}+U_{3}^{2}}$	
S1	Apparent power phase 1 (phase-to-neutral L1 - N)	
S2	Apparent power phase 2 (phase-to-neutral L2 - N)	
S3	Apparent power phase 3 (phase-to-neutral L3-N)	
Sr	Rated value of the apparent power of the system	
PF	Active power factor $\cos \varphi=P / S$	
PF1	Active power factor phase $1 \quad \mathrm{P} 1 / \mathrm{S} 1$	
PF2	Active power factor phase 2 P2/S2	
PF3	Active power factor phase 3 P3/S3	
QF	Reactive power factor $\sin \varphi=\mathrm{Q} / \mathrm{S}$	
QF1	Reactive power factor phase 1 Q1/S1	
QF2	Reactive power factor phase 2 Q2/S2	
QF3	Reactive power factor phase 3 Q3/S3	
LF	Power factor of the system $L F=\operatorname{sgnQ} \cdot(1-\|P F\|)$	
LF1	Power factor phase 1 sgnQ1 • (1-\|PF1)
LF2	Power factor phase 2 sgnQ2 • (1 - \|PF2)
LF3	$\begin{aligned} & \text { Power factor phase } 3 \\ & \text { sgnQ3 } \cdot(1-\mid \text { PF3 } \mid) \end{aligned}$	
H	Power supply	
Hn	Rated value of the power supply	

Applicable standards and regulations

IEC 688 resp.
EN 60688

IEC 1010 resp.
EN 61010

IEC 529 resp.
EN 60529
IEC 255-4 Part. E5

IEC 1000-4-2/-3/-4/-6

EN 55011 analogue and digital signals ment (static relays only) control equipment

Electrical measuring transducers for converting AC electrical variables into

Safety regulations for electrical measuring control and laboratory equip-

Protection types by case (code IP)
High-frequency disturbance test

Electromagnetic compatibility for in-dustrial-process measurement and

Electromagnetic compatibility of data processing and telecommunication equipment
Limits and measuring principles for radio interference and information equipment

IEC 68-2-1/-2/-3/-6/-27
resp.
EN 60 068-2-1/-2/-3/-6/-27 Ambient tests
-1 Cold, -2 Dry heat, -3 Damp heat, -6 Vibration, -27 Shock
DIN 40110
DIN 43807
IEC 1036

UL 94

Technical data

Inputs \oplus

Input variables:
Measuring ranges:
Waveform:
Rated frequency:

See Table 4 and 5
See Table 4 and 5
Sinusoidal
$50,60 \mathrm{~Hz}$ or $162 / 3 \mathrm{~Hz}$

Consumption [VA]
(at external power supply): Voltage circuit: $\mathrm{U}^{2} / 400 \mathrm{k} \Omega$
Current circuit: $\leq \mathrm{I}^{2} \cdot 0,01 \Omega$

Continuous thermal ratings of inputs

Current circuit	10 A400 V single-phase AC system 693 V three-phase system Voltage circuit480 V single-phase AC system 831 V three-phase system

Short-time thermal rating of inputs

Input variable	Number of inputs	Duration of overload	Interval between two overloads
Current circuit	400 V single-phase AC system 693 V three-phase system		
100 A	5	3 s	5 min .
250 A	1	1 s	1 hour
Voltage circuit	$1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A}$		
Single-phase AC system 600 V $\mathrm{H}_{\text {intern }}: 1.5 \mathrm{Ur}$	10	10 s	10 s
Three-phase system 1040 V $\mathrm{H}_{\text {intern }}: 1.5 \mathrm{Ur}$	10	10 s	10 s

PROFIBUS-DP (bus interface RS-485)

Bus connections:

Protocole:
Protocol chip:
Transmission rate:

Addresses:

Max. length of bus:

Interface:
Configuration possibilities:

Screw terminals on terminals 15 to 21
PROFIBUS-DP EN 50170
SPC 4
9,6 kBaud ... 12 MBaud automatic baud rate recognition
126 (default), set via
Set_Slave_Address
100 ... 1200 m (dependent on the baud rate and cable type)

RS 485, electrically insulated (500 V)
Locally from a PC, or via bus master

SINEAX DME 406 with PROFIBUS-DP
 Programmable multi-transducer

Table 1: Measured values that are available at the bus interface, depending on the application

Symbols	Meaning	Application (see Table 5)		
		A11 ... A16	A34	A24 / A44
U	Input voltage	-	-	-
U12	Phase-to-phase voltage L1 - L2	-	\bullet	\bullet
U23	Phase-to-phase voltage L2 - L3	-	\bullet	\bullet
U31	Phase-to-phase voltage L3-L1		\bullet	\bullet
U1N	Phase-to-neutral voltage $\mathrm{L} 1-\mathrm{N}$	-	-	-
U2N	Phase-to-neutral voltage $\mathrm{L} 2-\mathrm{N}$	-	-	\bullet
U3N	Phase-to-neutral voltage $\mathrm{L} 3-\mathrm{N}$	-	-	\bullet
UM	Average value of the voltages	-	-	-
I	Input current	-	-	-
11	AC current L1	-	\bullet	-
12	AC current L2	-	-	\bullet
13	AC current L3	-	-	-
IM	Average value of the currents	-	\bullet	-
IMS	Average value of the currents and sign of the active power	-	\bullet	\bullet
IB	RMS value of the current with wire setting range (bimetal measuring function)	\bullet	-	-
IB1	RMS value of the current with wire setting range (bimetal measuring function), phase 1	-	-	\bullet
IB2	RMS value of the current with wire setting range (bimetal measuring function), phase 2	-	\bullet	\bullet
IB3	RMS value of the current with wire setting range (bimetal measuring function), phase 3	-	\bullet	\bullet
BS	Slave pointer function for the measurement of the RMS value IB	\bullet	-	-
BS1	Slave pointer function for the measurement of the RMS value IB, phase 1	-	-	-
BS2	Slave pointer function for the measurement of the RMS value IB, phase 2	-	-	\bullet
BS3	Slave pointer function for the measurement of the RMS value IB, phase 3	-	-	-
F	Frequency of the input variable	-	-	\bullet
P	Active power of the system	-	-	\bullet
P1	Active power phase 1 (phase-to-neutral L1 - N)	-	-	\bullet

Continuation of Table 1:

Symbols	Meaning	Application (see Table 5)		
		A11 ... A16	A34	A24 / A44
P2	Active power phase 2 (phase-to-neutral L2 - N)	-	-	-
P3	Active power phase 3 (phase-to-neutral L3-N)	-	-	\bullet
PF	Active power factor $\cos \varphi=P / S$	\bullet	\bullet	\bullet
PF1	Active power factor phase 1, P1/S1	-	-	\bullet
PF2	Active power factor phase 2, P2/S2	-	-	\bullet
PF3	Active power factor phase 3, P3/S3	-	-	\bullet
Q	Reactive power of the system	\bullet	\bullet	\bullet
Q1	Reactive power phase 1 (phase-to-neutral L1 - N)	-	-	\bullet
Q2	Reactive power phase 2 (phase-to-neutral L2 - N)	-	-	\bullet
Q3	Reactive power phase 3 (phase-to-neutral L3 - N)	-	-	\bullet
S	Apparent power of the system	\bullet	\bullet	\bullet
S1	Apparent power phase 1 (phase-to-neutral L1 - N)	-	-	\bullet
S2	Apparent power phase 2 (phase-to-neutral L2 - N)	-	-	\bullet
S3	Apparent power phase 3 (phase-to-neutral L3-N)	-	-	\bullet
LF	Power factor of the system	\bullet	\bullet	\bullet
LF1	Power factor phase 1	-	-	\bullet
LF2	Power factor phase 2	-	-	-
LF3	Power factor phase 3	-	-	-
QF	Reactive power factor $\sin \varphi=$ Q/S	-	-	\bullet
QF1	Reactive power factor phase 1, Q1/S1	-	-	\bullet
QF2	Reactive power factor phase 2, Q2/S2	-	-	\bullet
QF3	Reactive power factor phase 3, Q3/S3	-	-	-
EA	Energy meter 1	-	\bullet	-
EB	Energy meter 2	-	\bullet	\bullet
EC	Energy meter 3	\bullet	-	-
ED	Energy meter 4	-	-	-

Where c.t's and/or v.t's are used for measurement, the values are referred to the primaries of the transformers.

Variables

- Energy meter reset
- Maximum value pointer reset

SINEAX DME 406 with PROFIBUS-DP
 Programmable multi-transducer

Reference conditions	
Ambient temperature:	$+23^{\circ} \mathrm{C} \pm 1 \mathrm{~K}$
Input variable:	Rated useful range
Power supply:	$\mathrm{H}=\mathrm{Hn} \pm 1 \%$
Active/reactive factor:	$\cos \varphi=1$ resp. $\sin \varphi=1$
Frequency:	$50 \ldots 60 \mathrm{~Hz}, 162 / 3 \mathrm{~Hz}$
Waveform:	Sinusoidal, form factor 1.1107
Miscellaneous:	EN 60688

System response

Accuracy class:	0.2 resp. 0.4 at applications with phase-shift
Energy meter:	$1.0 \mathrm{acc}$. to IEC 1036 $(0.1 \mathrm{Ir} \leq \mathrm{I} \leq 1.5 \mathrm{Ir})$
Duration of the measurement cycle:	Depending on measured variable and programming
Response time:	$1 \ldots 2$ times the measurement cycle

Influencing quantities and permissible variations
Acc. to EN 60688

Electrical safety

Protection class:	II	
Enclosure protection:	IP 40, housing	
	IP 20, terminals	
Overvoltage category:	III	
Insulation test:	Input voltage:	AC 400 V
	Input current:	AC 400 V
	Output:	DC 40 V
	Power supply:	AC 400 V
		DC 230 V

Surge test:
Test voltages:
$5 \mathrm{kV} ; 1.2 / 50 \mu \mathrm{~s} ; 0.5 \mathrm{Ws}$
$50 \mathrm{~Hz}, 1 \mathrm{~min}$. acc. to EN 61 010-1

5550 V, inputs versus all other circuits as well as outer surface
3250 V, input circuits versus each other

3700 V, power supply versus outputs and SCl as well as outer surface

490 V , outputs and SCI versus each other and versus outer surface

Power supply $\rightarrow \bigcirc$

AC voltage
100, 110, 230, 400, 500 or 693 V , $\pm 10 \%, 45$ to 65 Hz
Power consumption approx. 10 VA
DC, AC power pack (DC or $50 \ldots 60 \mathrm{~Hz}$)
Table 2: Rated voltages and tolerances

Rated voltage U_{N}	Tolerance
$24 \ldots 60$ V DC, AC	DC $-15 \ldots+33 \%$
$85 \ldots 230$ V DC, AC	AC $\pm 10 \%$

Consumption:
$\leq 9 \mathrm{~W}$ resp. $\leq 10 \mathrm{VA}$
Programming connector on transducer
Interface:
DSUB socket:

Installation data

Housing:

Housing material:

Mounting:

Orientation:
Weight:

Terminals

Type:
Max. wire gauge:

Ambient tests

EN 60 068-2-6:
Acceleration:
Frequency range:

RS 232 C
9-pin

The interface is electrically insulated from all other circuits.

Housing T24

See Section "Dimensioned drawings"
Lexan 940 (polycarbonate),
flammability class V-0 acc. to UL 94, self-extinguishing, non-dripping, free of halogen

For snapping onto top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$) acc. to EN 50022
or
directly onto a wall or panel using the pull-out screw hole brackets

Any
With supply transformer approx. 1.1 kg
With AC/DC power pack approx. 0.7 kg

Screw terminals with wire guards
$\leq 4.0 \mathrm{~mm}^{2}$ single wire or
$2 \times 2.5 \mathrm{~mm}^{2}$ fine wire

Vibration
$\pm 2 \mathrm{~g}$
$10 \ldots 150 \ldots 10 \mathrm{~Hz}$, rate of frequency sweep:
1 octave/minute

Number of cycles:
EN 60 068-2-27:
Acceleration:
EN 60 068-2-1/-2/-3:

10, in each of the three axes Shock
$3 \times 50 \mathrm{~g}$
3 shocks each in 6 directions
Cold, dry heat, damp heat

Nominal range of use for temperature:
Storage temperature:
Annual mean relative humidity: $\quad \leq 75 \%$
$0 . . .15 \ldots 30 \ldots 45^{\circ} \mathrm{C}$ (usage group II)
-40 to $+85^{\circ} \mathrm{C}$

Ambient conditions

Variations due to ambient temperature: $\pm 0.1 \% / 10 \mathrm{~K}$

Table 3: SINEAX DME 406 with PROFIBUS-DP

The versions of the transducer below programmed with the basic configuration are available as standard versions. It is only necessary to quote the Order No.:

Description / Basic configuration		Marking	Order No.
1. Mechanical design:	Housing T24 for rail and wall mounting	406-1	
2. Rated frequency:	50 Hz	1	
3. Power supply:	230 V AC, $45 \ldots 65 \mathrm{~Hz}$	3	146903
	$24 . . .60 \mathrm{~V}$ DC/AC	7	146896
	85... 230 V DC/AC	8	146911
4. Power supply connection:	External connection (standard)	1	
5. Test certificate:	None supplied	0	
6. Configuration:	Basic configuration programmed	0	
See Table 4 "Ordering Information"			
Basic configuration			
1. Application:	4-wire, 3-phase system, asymmetric load (NPS)	A 44	
2. Input voltage:	Design value Ur $=100 \mathrm{~V}$	$\cup 21$	
3. Input current:	Design value $\mathrm{Ir}=2 \mathrm{~A}$	$\vee 2$	
4. Primary data:	Without specification of primary rating	W 0	
5. Energy meter 1:	Not used	EA 00	
6. Energy meter 2:	Not used	FA 00	
7. Energy meter 3:	Not used	GA 00	
8. Energy meter 4:	Not used	HA 00	
See Table 5 "Programming"			

Table 4: Ordering Information

DESCRIPTION	MARKING
1. Mechanical design Housing T24 for rail and wall mounting	$406-1$
2. Rated frequency 1) $50 \mathrm{~Hz}(60 \mathrm{~Hz}$ possible without additional error; $162 / 3 \mathrm{~Hz}$, additional error $1.25 \%)$	
2) $60 \mathrm{~Hz}(50 \mathrm{~Hz}$ possible without additional error; $162 / 3 \mathrm{~Hz}$, additional error $1.25 \%)$	1
3) $162 / 3 \mathrm{~Hz}$ (not re-programming by user, $50 / 60 \mathrm{~Hz}$ possible, but with additional error $1.25 \%)$	2

Table 4 continued on next page!

SINEAX DME 406 with PROFIBUS-DP
 Programmable multi-transducer

Continuation "Table 4: Ordering Information"

DESCRIPTION	MARKING
3. Power supply	
Nominal range	
1) $A C \quad 90 \ldots 110 \mathrm{~V} \quad H_{n}=100 \mathrm{~V}$	1
2) $\mathrm{AC} \quad 99 \ldots 121 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=110 \mathrm{~V}$	2
3) $\mathrm{AC} 207 \ldots 253 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=230 \mathrm{~V}$	3
4) $\mathrm{AC} 360 \ldots 440 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=400 \mathrm{~V}$	4
5) AC $450 \ldots 550 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=500 \mathrm{~V}$	5
6) AC $623 \ldots 762 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=693 \mathrm{~V}$	6
7) DC/AC $24 \ldots 60 \mathrm{~V}$	7
8) DC/AC $85 \ldots 230 \mathrm{~V}$	8
4. Power supply connection	
1) External connection (standard)	1
2) Internal from voltage input	2
Line 2: Not available for rated frequency $162 / 3 \mathrm{~Hz}$ and applications A15 / A16 / A24	
5. Test certificate	
0) None supplied	0
D) With test certificate in German	D
E) With test certificate in English	E
6. Configuration	
0) Basic configuration programmed (see Table 3)	0
9) Programmed to order	9
Line 0: Not available if the power supply is taken from the voltage input	
Zeile 9: All the programming data must be entered on Form W 2410 e and the form must be included with the order, if the primary values of the measured variables or meter readings have to be transferred.	

Tabelle 5: Programming

DESCRIPTION	A11 ... A16	Application A34	A24 / A44
1. Application (system) Single-phase AC	A11	-	
3-wire, 3-phase symmetric load, phase-shift U: L1-L2, I: L1	A12	-	-
3-wire, 3-phase symmetric load	A13	-	-
4-wire, 3-phase symmetric load	A14	-	-
3-wire, 3-phase symmetric load, phase-shift U: L3-L1, I: L1	A15	-	-
3-wire, 3-phase symmetric load, phase-shift U: L2-L3, I: L1	A16	-	-
3-wire, 3-phase asymmetric load	-	A34	-
4-wire, 3-phase asymmetric load	-	-	-
4-wire, 3-phase asymmetric load, open Y	-	-	A44

Table 5 continued on next page!

Continuation «Table 5: Programming»

Table 5 continued on next page!

SINEAX DME 406 with PROFIBUS-DP
 Programmable multi-transducer

Continuation "Table 5: Programming"

Note: The meter reading is referred to the power $P=I \cdot$ Up for I, respectively $I 1 \cdot$ Up for I1, I2 \cdot Up for I2 and $I 3 \cdot$ Up for I3 where Up = the primary rated voltage or the secondary rated voltage if there is no v.t.

Electrical connections

Function			Connection
Measuring input Θ	AC current	t IL1	$1 / 3$
		IL2	4/6
		IL3	7/9
	AC voltage	U UL1	2
		UL2	5
		UL3	8
		N	11
$\begin{aligned} & \hline \text { RS } 485 \\ & \text { (PROFIBUS DP) } \end{aligned}$		VP	15
		RxD/TxD -P	16
		RxD/TxD - N	17
		Shield	18
		RxD/TxD -P'	19
		RxD/TxD -N'	20
		DGND	21
Power supply AC $\rightarrow \bigcirc$		\sim	13
		\sim	14
		+	13
		-	14

If power supply is taken from the measured voltage internal connections are as follow:

Application (system)	Internal connection Terminal / System	
Single-phase AC current	$2 / 11 \quad$ (L1-N)	
4-wire 3-phase symmetric load	$2 / 11 \quad$ (L1 - N)	
All other (apart from A15 / A16 / A24)	$2 / 5 \quad$ (L1 - L2)	

Bus Cable Termination

Both ends of the bus cable must be fitted with bus terminators. This ensures that:

- the conductor has a fixed rest voltage,
- reflections in the cable are minimized and
- the bus has an almost constant load.

$B F=$ Bus Failure $L E D$
The slave is in the state "Baud Search" and does not receive valid telegrams
$B A=$ Bus Aktive
The slave is exchanging data cyclically
$B D=$ Bus Diagnosis LED
Lit: Parameter error
Flashing: Configuration error

SINEAX DME 406 with PROFIBUS-DP Programmable multi-transducer

Measuring input							
System / application	Terminals						
3-wire 3-phase symmetric load I: L1 (A13)	Connect the voltage according to the following table for current measurement in L2 or L3:						
3-wire 3-phase symmetric load Phase-shift U: L1 - L2 I: L1 (A12)	Connect the voltage according to the following table for current measurement in $L 2$ or $L 3$:						
3-wire 3-phase symmetric load Phase-shift U: L3 - L1 I: L1 (A15)	Connect the voltage according to the following table for current measurement in L2 or L3:						

SINEAX DME 406 with PROFIBUS-DP Programmable multi-transducer

Relationship between PF, QF and LF

Dimensioned drawings

Table 6: Accessories

Description	Order No.
Programming cable	980179
Configuration software DME 4 for SINEAX/EURAX DME 424, 440, 442, SINEAX DME 400, 401 and 406 Windows 3.1x, 95, 98, NT and 2000 on CD in German, English, French, Italian and Dutch (Download free of charge under http://www.gmc-instruments.com) In addition, the CD contains all configuration programmes presently available for Camille Bauer products.	146557
Operating Instructions DME 406-1 Bd-f-e	146888

Fig. 4. SINEAX DME 406 in housing T24 clipped onto a top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$, acc. to EN 50 022).

Fig. 5. SINEAX DME 406 in housing T24, screw hole mounting brackets pulled out.

SINEAX DME 406 with PROFIBUS-DP Programmable multi-transducer

